Small molecule Photoregulin3 prevents retinal degeneration in the RhoP23H mouse model of retinitis pigmentosa
نویسندگان
چکیده
Regulation of rod gene expression has emerged as a potential therapeutic strategy to treat retinal degenerative diseases like retinitis pigmentosa (RP). We previously reported on a small molecule modulator of the rod transcription factor Nr2e3, Photoregulin1 (PR1), that regulates the expression of photoreceptor-specific genes. Although PR1 slows the progression of retinal degeneration in models of RP in vitro, in vivo analyses were not possible with PR1. We now report a structurally unrelated compound, Photoregulin3 (PR3) that also inhibits rod photoreceptor gene expression, potentially though Nr2e3 modulation. To determine the effectiveness of PR3 as a potential therapy for RP, we treated RhoP23H mice with PR3 and assessed retinal structure and function. PR3-treated RhoP23H mice showed significant structural and functional photoreceptor rescue compared with vehicle-treated littermate control mice. These results provide further support that pharmacological modulation of rod gene expression provides a potential strategy for the treatment of RP.
منابع مشابه
Potential of Small Molecule–Mediated Reprogramming of Rod Photoreceptors to Treat Retinitis Pigmentosa
Purpose Mutations in rod photoreceptor genes can cause retinitis pigmentosa (RP). Rod gene expression is regulated by the nuclear hormone receptor, Nr2e3. Genetic deletion of Nr2e3 reprograms rods into cells that resemble cone photoreceptors, and might therefore prevent their death from some forms of RP. There are no identified ligands for Nr2e3; however, reverse agonists might mimic the geneti...
متن کاملCharacterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa.
PURPOSE To investigate the pathogenic mechanisms that underlie retinal degeneration induced by the rhodopsin mutation P23H in a Xenopus laevis model of RP. METHODS Transgenic X. laevis were generated that expressed the rhodopsin mutants rhoP23H and rhoP23H/K29R (a variant incapable of transducin activation). Using quantitative dot blot assay, transgenic rhodopsin levels and the extent of reti...
متن کاملGene editing in photoreceptor progenitors prevents visual function loss in a mouse model of retinal degeneration
Purpose:Currently, there is no known cure for Retinitis pigmentosa (RP). Even if some treatments can slow down the progression of the disease, none of them can effectively stop retinal degeneration. We exploited the possibility of an early intervention in photoreceptor progenitors aiming at preventing cell death. For our purpose, we selected the Rd10 mouse model, which carries a point mutation ...
متن کاملThe bacterial toxin CNF1 as a tool to induce retinal degeneration reminiscent of retinitis pigmentosa
Retinitis pigmentosa (RP) comprises a group of inherited pathologies characterized by progressive photoreceptor degeneration. In rodent models of RP, expression of defective genes and retinal degeneration usually manifest during the first weeks of postnatal life, making it difficult to distinguish consequences of primary genetic defects from abnormalities in retinal development. Moreover, mouse...
متن کاملReprogramming of adult rod photoreceptors prevents retinal degeneration.
A prime goal of regenerative medicine is to direct cell fates in a therapeutically useful manner. Retinitis pigmentosa is one of the most common degenerative diseases of the eye and is associated with early rod photoreceptor death followed by secondary cone degeneration. We hypothesized that converting adult rods into cones, via knockdown of the rod photoreceptor determinant Nrl, could make the...
متن کامل